• April 7, 2024

Compare And Contrast Between Ipv4 And Ipv6

IPv4 vs IPv6: What's the Difference Between IPv4 and IPv6?

IPv4 vs IPv6: What’s the Difference Between IPv4 and IPv6?

What is IP?
An IP (Internet Protocol) address is a numerical label assigned to each device connected to a computer network that uses the IP protocol for communication. An IP address acts as an identifier for a specific device on a particular network. The IP address is also called an IP number or Internet address.
IP address specifies the technical format of the addressing and packets scheme. Most networks combine IP with a TCP (Transmission Control Protocol). It also allows developing a virtual connection between a destination and a source.
Now in this IPv4 and IPv6 difference tutorial, we will learn What is IPv4 and IPv6?
What is IPv4?
IPv4 is an IP version widely used to identify devices on a network using an addressing system. It was the first version of IP deployed for production in the ARPANET in 1983. It uses a 32-bit address scheme to store 2^32 addresses which is more than 4 billion addresses. It is considered the primary Internet Protocol and carries 94% of Internet traffic.
What is IPv6?
IPv6 is the most recent version of the Internet Protocol. This new IP address version is being deployed to fulfill the need for more Internet addresses. It was aimed to resolve issues that are associated with IPv4. With 128-bit address space, it allows 340 undecillion unique address space. IPv6 is also called IPng (Internet Protocol next generation).
Internet Engineer Taskforce initiated it in early 1994. The design and development of that suite are now called IPv6.
IPv4 is 32-Bit IP address whereas IPv6 is a 128-Bit IP address.
IPv4 is a numeric addressing method whereas IPv6 is an alphanumeric addressing method.
IPv4 binary bits are separated by a dot(. ) whereas IPv6 binary bits are separated by a colon(:).
IPv4 offers 12 header fields whereas IPv6 offers 8 header fields.
IPv4 supports broadcast whereas IPv6 doesn’t support broadcast.
IPv4 has checksum fields while IPv6 doesn’t have checksum fields
When we compare IPv4 and IPv6, IPv4 supports VLSM (Variable Length Subnet Mask) whereas IPv6 doesn’t support VLSM.
IPv4 uses ARP (Address Resolution Protocol) to map to MAC address whereas IPv6 uses NDP (Neighbour Discovery Protocol) to map to MAC address.
Features of IPv4
Following are the features of IPv4:
Connectionless Protocol
Allow creating a simple virtual communication layer over diversified devices
It requires less memory, and ease of remembering addresses
Already supported protocol by millions of devices
Offers video libraries and conferences
Features of IPv6
Here are the features of IPv6:
Hierarchical addressing and routing infrastructure
Stateful and Stateless configuration
Support for quality of service (QoS)
An ideal protocol for neighboring node interaction
IPv4 vs IPv6
Difference Between IPv4 and IPv6 Addresses
IPv4 & IPv6 are both IP addresses that are binary numbers. Comparing IPv6 vs IPv4, IPv4 is 32 bit binary number while IPv6 is 128 bit binary number address. IPv4 address are separated by periods while IPv6 address are separated by colons.
Both are used to identify machines connected to a network. In principle, they are the same, but they are different in how they work. Below are the main differences between IPv4 and IPv6:
Basis for differences
Size of IP address
IPv4 is a 32-Bit IP Address.
IPv6 is 128 Bit IP Address.
Addressing method
IPv4 is a numeric address, and its binary bits are separated by a dot (. )
IPv6 is an alphanumeric address whose binary bits are separated by a colon (:). It also contains hexadecimal.
Number of header fields
Length of header filed
Has checksum fields
Does not have checksum fields
12. 244. 233. 165
Type of Addresses
Unicast, broadcast, and multicast.
Unicast, multicast, and anycast.
Number of classes
IPv4 offers five different classes of IP Address. Class A to E.
lPv6 allows storing an unlimited number of IP Address.
You have to configure a newly installed system before it can communicate with other systems.
In IPv6, the configuration is optional, depending upon on functions needed.
VLSM support
IPv4 support VLSM (Variable Length Subnet mask).
IPv6 does not offer support for VLSM.
Fragmentation is done by sending and forwarding routes.
Fragmentation is done by the sender.
Routing Information Protocol (RIP)
RIP is a routing protocol supported by the routed daemon.
RIP does not support IPv6. It uses static routes.
Network Configuration
Networks need to be configured either manually or with DHCP. IPv4 had several overlays to handle Internet growth, which require more maintenance efforts.
IPv6 support autoconfiguration capabilities.
Best feature
Widespread use of NAT (Network address translation) devices which allows single NAT address can mask thousands of
non-routable addresses, making end-to-end
integrity achievable.
It allows direct addressing because of vast address
Address Mask
Use for the designated network from host portion.
Not used.
SNMP is a protocol used for system management.
SNMP does not support IPv6.
Mobility & Interoperability
Relatively constrained network topologies to which move restrict mobility and interoperability capabilities.
IPv6 provides interoperability and mobility
capabilities which are embedded in network devices.
Security is dependent on applications – IPv4 was not designed with security in mind.
IPSec(Internet Protocol Security) is built into the IPv6 protocol, usable with
a proper key infrastructure.
Packet size
Packet size 576 bytes required, fragmentation optional
1208 bytes required without fragmentation
Packet fragmentation
Allows from routers and sending host
Sending hosts only
Packet header
Does not identify packet flow for QoS handling which includes checksum options.
Packet head contains Flow Label field that specifies packet flow for QoS handling
DNS records
Address (A) records, maps hostnames
Address (AAAA) records, maps hostnames
Address configuration
Manual or via DHCP
Stateless address autoconfiguration using Internet Control Message Protocol version 6 (ICMPv6) or DHCPv6
IP to MAC resolution
Broadcast ARP
Multicast Neighbour Solicitation
Local subnet Group management
Internet Group Management Protocol GMP)
Multicast Listener Discovery (MLD)
Optional Fields
Has Optional Fields
Does not have optional fields. But Extension headers are available.
Internet Protocol Security (IPSec) concerning network security is optional
Internet Protocol Security (IPSec) Concerning network security is mandatory
Dynamic host configuration Server
Clients have approach DHCS (Dynamic Host Configuration server) whenever they want to connect to a network.
A Client does not have to approach any such server as they are given permanent addresses.
Uses ARP(Address Resolution Protocol) to map to MAC address
Uses NDP(Neighbour Discovery Protocol) to map to MAC address
Combability with mobile devices
IPv4 address uses the dot-decimal notation. That’s why it is not suitable for mobile networks.
IPv6 address is represented in hexadecimal, colon- separated notation.
IPv6 is better suited to mobile
IPv4 and IPv6 cannot communicate with other but can exist together on the same network. This is known as Dual Stack.
Learn the Difference Between IPv4 and IPv6 - Parallels

Learn the Difference Between IPv4 and IPv6 – Parallels

October 21, 2020Last updated on June 1, 2021
The Internet Protocol, or IP, is the set of rules that makes it possible for our computers and other communication devices to connect to each other over the internet. Whenever you open a website on your browser, a data packet with your IP address is sent to the web server’s own IP address, after which the website is then served over the internet back to your device.
IPv4 and IPv6 stand for Internet Protocol version 4 and version 6, respectively. The two versions currently coexist, and IPv6 will take over once the IPv4 addresses run out. What are the major differences between IPv4 and IPv6? Let’s find out.
IPv4 Definition
IP addresses operate in the same way as street addresses laid out on a map. They direct packets to their intended destinations.
IP controls all internet traffic. Data packets with the IP information of their points of origin and their destinations travel on the internet, with routers helping to direct them down the correct path.
IP is the other half of TCP/IP, or the so-called Internet Protocol Suite. TCP, Transmission Control Protocol, governs the transport layer while IP is concerned with the network layer. TCP/IP was developed by the Defense Advanced Research Projects Agency (DARPA), a US federal agency under the Department of Defense. It became the computer networking standard for the US military in 1982. Soon after, it became the primary standard for packet-switching networks like the internet.
IPv4 is a connectionless protocol operating on a best-effort delivery model, which means it does not guarantee delivery nor can it avoid duplicates. TCP sits atop IP and addresses these shortcomings through mechanisms such as data integrity checking.
IPv4 became the main protocol governing data packet transmissions in 1981. During the definition of the standard, the version numbers progressed rapidly, starting with version 1 until IPv4 became the one that was utilized in ARPANET, the forerunner of the internet, in 1983.
Originally, IP addresses were designed to support only a low number of networks. By the time IPv4 was rolled out in 1981, it had been divided into address classes in a classful network addressing architecture to cope with this limitation. This architecture was superseded in 1993 when Classless Inter-Domain Routing (CIDR) was introduced to slow both IPv4 address exhaustion and the rapid growth of routing tables across the internet.
IPv4 addresses are numeric and formatted using dotted decimal notation, or four decimal octets separated by dots, e. g., 172. 217. 31. 238. Since an octet is eight bits in length, with the four octets, each IPv4 address is 32-bits, or four bytes, long.
At 232 IP addresses, the number of IPv4 addresses total almost 4. 3 billion. The number goes down to around four billion if some 300 million addresses reserved for multicast and private networks are excluded. Network address translation (NAT) is used to allow IP addresses reserved for private networks to communicate over the internet.
It was originally thought that IPv4 could provide IP addresses for all devices on the internet but it soon became apparent that a more robust alternative was needed to meet future demand, even if IPv4 addresses could be reused. With the number of devices accessing the internet already numbering in the billions, especially since smartphones and the Internet of Things (IoT) have become ubiquitous, almost all IPv4 addresses have been assigned—enter IPv6.
IPv6 Definition
As internet use took off in the 1990s, the Internet Engineering Task Force (IETF), the open standards body in charge of defining technical internet protocols, became aware of a potential problem in IPv4: The number of available IP addresses it can generate is limited and will not be enough to assign to devices accessing the internet in the foreseeable future.
The IETF decided that a better standard for future-proof IP addressing was needed. By 1998, it had come up with a draft standard for the better and improved IPv6, which was intended to supersede IPv4 eventually.
IPv6 provides for a 128-bit IP address. This means that it allows the generation of 2^128 or approximately 3. 4 × 10^38 addresses. In layman’s terms, the number of IPv6 addresses can be trillions of trillions.
Since IPv6 also reserves blocks of numbers for special use or excludes some numbers from use altogether, the actual number of IPv6 addresses should be slightly less, just like in IPv4. Still, the number of IPv6 addresses is virtually limitless and should be enough to meet future demand.
While IPv6 conforms to the same design principles as IPv4, IPv6 addresses come in eight groups of four hexadecimal digits, with each separated by colons such as fe80:0000:0000:0350:9804:1781:4371:2d03. The majority of IPv6 addresses don’t occupy all their 128 bits, leading to fields that contain only zeros or gets padded with zeros.
With IPv6 addressing architecture, you can use the two-colons (::)to represent a contiguous 16-bit field of zeros. For example, you can collapse fe80:0000:0000:0350:9804:1781:4371:2d03 into fe80::0350:9804:1781:4371:2d03 to make it more readable.
IPv4 and IPv6 Differences
Size of the address
32 bits
128 bits
Addressing method
IPv4 is a numeric address. It uses a dotted notation to
separate the binary octets.
IPv6 is an alphanumeric address. It uses a colon to
separate the binary bits.
Number of classes
There are five classes, A to E.
It allows a limitless number of IP addresses.
Type of addresses
Unicast, multicast, broadcast
Unicast, multicast, and anycast
Number of header fields
Length of header filed
Checksum fields
Has checksum fields
Has no checksum fields
Packet size
The minimum packet size for an IPv4 is 576 bytes.
The minimum packet size for an IPv4 is 1208 bytes.
IPv4 uses the address resolution protocol (ARP) to map an
IP address to the media access control (MAC) address.
IPv6 uses the neighbor discovery protocol (NDP) to map the
IP to MAC address.
Dynamic host configuration server (DHCS)
Clients request the DHCSs’ for IP addresses before
connecting to the network.
Clients have permanent addresses. There is no need for
Simple network management protocol (SNMP)
IPv4 uses SNMP for system management.
IPv6 does not use SNMP
Compatibility with mobile devices
IPv4 uses a dot-decimal notation, which is not appropriate
for mobile networks.
IPv6 uses hexadecimal colon-separated notation, which is
more appropriate for mobile networks.
Local subnet group management
IPv4 uses the internet group management protocol (GMP)
IPv6 uses multicast listener discovery (MLD).
Interoperability and mobility
It limits network topologies, therefore, hindering
interoperability and mobility.
It has interoperability and mobility capabilities embedded
in network devices.
Subnet mask
The designated network uses the subnet mask from the host
It does not use subnet masks.
Routing information protocol (RIP)
IPv4 supports RIP
IPv6 does not support RIP
Address features
IPv4 uses the network address translation (NAT) that allows
a single address to mask multiple non-routable addresses.
IPv6 uses direct addressing due to its vast address space.
Security depends on the applications.
IPv6 has an internet protocol security (IPsec) built into
the protocol to provide automatic security.
Optional fields
Has optional fields
It has no optional fields. It offers extension headers.
The most significant difference between IPv4 and IPv6 is the virtually limitless number of IP addresses allowed in the latter. When IPv4 came out, mobile devices were not yet common. Thus, IPv4 was built without mobile networks and IoT-enabled devices in mind. When these devices go online and connect to the internet, they go through indirectly, via NAT. This process can sometimes pose problems for IPv4 devices.
With mobile device internet access now the standard, shifting to IPv6 is imperative, as it allows for more streamlined communications between devices. It is not surprising that mobile networks lead in the adoption of IPv6, given the advantages it offers them. IPv6 allows a single device to have multiple IP addresses depending on how that device is used. Instead of going through NAT, each device connects directly to the internet using its own assigned IP address.
When IPv4 came out, network security was not yet anyone’s foremost concern. However, IPv4’s updates allow it to be configured with the same IP security standards as IPv6. Although IPv6 is designed to be more secure with its built-in encryption capabilities and packet integrity checking, IPv4 can also be made more secure so there is essentially no difference between them when it comes to Internet Protocol security (IPsec).
However, IPv4 requires Address Resolution Protocol (ARP) to map to a device’s physical, or media access control (MAC), address. ARP is prone to spoofing and can be a vector for man-in-the-middle or denial-of-service attacks on a network. Although this risk can be mitigated by using software designed to prevent such attacks, it nevertheless poses a problem.
To map to a device’s MAC address, IPv6 uses the more robust Neighbor Discovery Protocol (NDP) and its related extensions, including Secure Neighbor Discovery Protocol (SEND), a security extension that provides cryptographic addresses and a public key infrastructure (PKI) separate from the IPsec inherent in IPv6. Thus, despite IP security presence in IPv4, there remains a difference between IPv4 and IPv6, security-wise.
As for device configuration, IPv4 may either require extensive manual configuration or assisted configuration using Dynamic Host Configuration Protocol (DHCP). In contrast, autoconfiguration is available for each device with an IPv6 address. Again, IPv6 wins hands down when it comes to device configuration.
Since it has matured and improved through the years, IPv4 performs at speeds up to par with IPv6, which is theoretically faster since it does not require NAT. However, IPv6 network performance should surpass IPv4 networks soon, as network administrators become more adept in optimizing them like they have learned to tune IPv4 networks.
IPv6 Pros and Cons
The danger of eventually running out of IP addresses has passed because of IPv6. However, the larger number of addresses in IPv6 is not the only advantage it has over IPv4.
For one, hierarchical address allocation in IPv6 addresses the increasingly complex routing tables in IPv4, an issue that had been addressed previously through CIDR. IPv6 addressing is straightforward and does not pose a problem for routers. With IPv6, CIDR is no longer essential, though you can still use it for router configuration.
Moreover, IPv6 has a new packet format that is designed to undergo minimal router processing. Thus, IPv6 should make for easier network management, more efficient routing and better device mobility. However, since the packet format for IPv6 is different from that of IPv4, the two IP standards are not interoperable. The IETF has tried to mitigate the potential issues arising from this non-interoperability; so far, these measures have proven successful in ensuring that both standards can operate together without any major issues.
Another area where IPv6 holds an edge is multicast addressing, which allows devices to send bandwidth-intensive packets such as multimedia streams to multiple destinations simultaneously.
IPv6 also provides for easier configuration. It allows simultaneous connections to multiple networks, which is not possible with IPv4. While IPv6 can still use static IP addresses or DHCP, it can utilize stateless automatic configuration. This allows seamless integration with prefixes and routers on the network and at the same time gives IPv6 devices the capability to assign addresses automatically to themselves using a unique 64-bit identifier. This auto-configuration capability is why IPv6 is ideal for use in IoT-enabled devices.
Other benefits of IPv6 include better security out of the box. With IPv6, ping scans are no longer needed, taking away a potential vector for worms to spread across your network. On the minus side, this leaves DNS servers as potential targets for attackers.
Other cons of IPv6 include the need to upgrade networking devices that are not designed for IPv6.
It may also prove difficult to type and remember overly long IPv6 addresses composed of letters and numbers and fit them in network topology diagrams. Although this sounds trivial, it may prove to be difficult and bothersome if you are administering large networks. You also must remember to enable IPv6 routing and disable IPv4 routing at the same time when you start moving to IPv6.
Migration from IPv4 to IPv6 may prove complicated, given that the two protocols are not backward compatible. This may mean assigning new IP addresses manually at the start. This process should become less problematic as networks eventually transition to IPv6.
To minimize costs when moving to IPv6, companies can adopt a strategy that would allow them to leverage their current IPv4 infrastructure while taking advantage of the benefits offered by IPv6. Instead of totally replacing IPv4 with IPv6, you can opt to have a dual-stack network where your hardware runs on both protocols, using IPv6 when possible. This approach is feasible since it is supported by major vendors.
IPv6 Adoption
While IPv4 and IPv6 coexist right now, they are not designed to be interoperable. The IETF has several strategies in place to ensure that both protocols can exist together while preparing for the transition to IPv6. These allow IPv4 and IPv6 hosts to communicate with each other. Eventually, IPv6 addresses will become the norm, but that may still take a few more years.
While the anticipated total shift to IPv6 has yet to occur, internet registries around the world are already running out of IPv4 addresses. The biggest factor behind the slow adoption of IPv6 is the NAT, which allows the relatively narrow range of private IPv4 addresses to be used over the public internet. With NAT providing a workaround for the limited number of IPv4 addresses, corporate networks have not moved hastily towards IPv6.
Thus, the transition towards IPv6 has been slow. Although deployment of IPv6 started in 2006, IPv6 itself only became an official internet standard in 2017.
With internet registries sounding the alarm, IPv6 is now poised to take center stage in the IP-addressing space. Although it had more than two decades to mature, it has gained widespread traction in recent years.
Mobile networks, followed closely by internet service providers (ISPs), lead adoption of IPv6. Major websites have started transitioning to IPv6 as well. Trailing at the back are enterprises, hampered by their existing investments in IPv4 networks.
Problems encountered when migrating to IPv6 make matters worse for IPv6 adoption. For example, a Windows 10 bug related to IPv6 delayed Microsoft’s efforts to transition to IPv6 at its Seattle headquarters in 2017.
IPv4 will probably linger around for a few more years, or even another decade, as IPv4 equipment is expensive to replace. That is not to say that you should not adopt IPv6. Your organization should start moving towards IPv6 adoption to avoid any major issues later.
Parallels RAS is IPv6 Compliant
Parallels® Remote Application Server (RAS) is IPv6-compliant and maintains backward compatibility with IPv4. It supports various deployment models, from on-premises to public cloud to a mix of the two and even hyper-converged deployment.
Parallels RAS allows quick creation of a virtual desktop infrastructure (VDI) with improved security and centralized desktop management capabilities. It offers support for various hypervisors and can facilitate automatic deployment of VDI desktops on-demand through custom guest virtual machine (VM) templates.
Parallels RAS supports a multi-tenant architecture through its own Tenant Broker, allowing different tenants to share Parallels Secure Client Gateways and High Availability Load Balancers while maintaining security and usage efficiency and lowering ownership costs.
Parallels RAS also provides Security Assertion Markup Language single sign-on (SAML SSO) integration, allowing centralized access to hosted resources. It even supports third-party load balancers such as Amazon Web Services Elastic Load Balancing services.
From the Parallels RAS Console, your administrators can configure a Parallels RAS farm, deploy servers, publish applications and desktops, monitor resources, manage connected devices and define security policies using a single pane of glass. These capabilities are also available on a web-based console, which can be served from any HTML5-compliant web browser. Get started with an IPv6-compliant VDI by downloading the Parallels RAS trial.
Get started with an IPv6-compliant VDI by downloading the Parallels RAS trial.
Differences between IPv4 and IPv6 - GeeksforGeeks

Differences between IPv4 and IPv6 – GeeksforGeeks

IPv4 and IPv6 are internet protocol version 4 and internet protocol version 6, IP version 6 is the new version of Internet Protocol, which is way better than IP version 4 in terms of complexity and efficiency. Difference Between IPv4 and IPv6: IPv4IPv6IPv4 has 32-bit address lengthIPv6 has 128-bit address lengthIt Supports Manual and DHCP address configurationIt supports Auto and renumbering address configurationIn IPv4 end to end connection integrity is UnachievableIn IPv6 end to end connection integrity is AchievableIt can generate 4. 29×109 address spaceAddress space of IPv6 is quite large it can produce 3. 4×1038 address spaceSecurity feature is dependent on applicationIPSEC is inbuilt security feature in the IPv6 protocolAddress representation of IPv4 is in decimalAddress Representation of IPv6 is in hexadecimalFragmentation performed by Sender and forwarding routersIn IPv6 fragmentation performed only by senderIn IPv4 Packet flow identification is not availableIn IPv6 packetflow identification are Available and uses flow label field in the headerIn IPv4 checksumfield is availableIn IPv6 checksumfield is not availableIt has broadcast Message Transmission SchemeIn IPv6 multicast and any cast message transmission scheme is availableIn IPv4 Encryption and Authentication facility not providedIn IPv6 Encryption and Authentication are provided IPv4 has header of 20-60 bytes. IPv6 has header of 40 bytes fixed Attention reader! Don’t stop learning now. Practice GATE exam well before the actual exam with the subject-wise and overall quizzes available in GATE Test Series all GATE CS concepts with Free Live Classes on our youtube channel.

Frequently Asked Questions about compare and contrast between ipv4 and ipv6

Leave a Reply

Your email address will not be published. Required fields are marked *