Selenium Web Crawler
Build a scalable web crawler with Selenium and Python
Implementation within the Google Cloud Platform by using Docker, Kubernetes Engine and Cloud DatastoreFig. 1 — Image from Pixabay (Pixabay License)Disclaimer: Since scraping of Services is prohibited by the terms of use, I would like to point out that we immediately processed the underlying data within the project with NLP and no storing of the pure texts took place. The approach illustrated in this article is therefore for demonstration purposes only and can be used for other websites that allow web article is part of a larger project. If you are also interested in performing Natural Language Processing on the results to extract technology names by using PySpark and Kubernetes or building highly scalable Dashboards in Python, you will find corresponding links at the end of the troductionProject Idea and approachSource Inspection and PackagesImplementation StepsResultsLife as a Data Scientist can be tough. It is not only the acquisition and quality of data and its interpretability that poses challenges. The rapid development of technologies, as well as constantly rising expectations from business (keyword rocket science), also make the work more difficult. However, in my experience, the acquisition and application of new technologies, in particular, is a source of enthusiasm for most data scientists. For this reason, I built a scalable web crawler with common technologies to improve my files and code snippets that are referenced in this article can be found in my GitHub wards Data Science (TWDS) is one of the best known and most instructive places to go for data science. It is a publication on which a large number of authors have published various articles. Recurrently used technologies are referenced and their use is often presented in case erefore I decided to build a web crawler that extracts the content of TWDS and stores it inside the NoSQL database “Google Datastore”. To make the web crawler scalable, I used Docker for containerizing my application and Kubernetes for the 2 — Technical Overview of the scalable infrastructureThe approach was to develop the web crawler in a Jupyter Notebook on my local machine and to constantly professionalize and increase the project (see Fig 2). For instance, I built a Python application with a dedicated crawler class and all necessary methods based on the Jupyter Notebook scripts. But let us have a more detailed look at the implementation steps. 3. 1 Source inspectionTo develop a properly operating web crawler, it is important to familiarize yourself in advance with the site structure, available content, and 3 — Connection of the relevant entitiesTWDS is a classic publication with many authors and a lot of articles. Thanks to an archive page it was easy to understand the page structure in detail (see Fig. 3). Fortunately, the authors were not only listed there but also provided with links that led to overview pages for these 4 — Page source-code for authors list on TWDS-ArchiveThe used HTML class was constantly used so that the links could easily be identified (see Fig. 4) the overview pages of the authors, I figured out that at first only the author’s articles published on TWDS were listed. Other articles published on by the author were not displayed. It was therefore not necessary to check whether the specific article belonged to the TWDS publication. Unfortunately, the HTML class for these links was empty and the links could not be identified. However, the links contained the complete URL and thus the word “towards”. Therefore, the identification of these links was just as unambiguous. However, another challenge occurred when examining the page. Not all of the author’s articles were displayed directly, but when the website was scrolled down further content was dynamically reloaded using Javascript. To ensure completeness, this had to be taken into account for the development of the web 5 — Example of the HTML source code from a TWDS-ArticleFinally, I had to examine the structure of the individual articles for similarities and patterns to extract the relevant data fields. The required properties were author, URL, title, text, reading time, publishing date, tags, claps and the number of responses. As can be seen in Figure 5, the HTML source code has some challenges. For example, the class names are seemingly dynamically generated and have only minor matches across articles. But there are also rays of hope, e. g. reading time, title, URL, and publishing date are standardized in the page header. The remaining content was reasonably easy to access. 2 Package SelectionAt first, during development in Jupyter Notebooks, I was looking for Python packages I could use to fulfill all requirements. I quickly realized for Scrapy, one of the most commonly used packages for web scraping, that dynamic content reloading would be difficult. After focusing on this requirement, I became aware of Selenium. Selenium is a framework for automated software testing of web applications and can interact with browsers, e. to scroll down pages to load the dynamic javascript content and receive the full HTML source work with the extracted HTML source code, I found the Python package BeautifulSoup4, which provides various methods to systematically search the HTML tree structure for relevant content. With these packages selected, I could fulfill all the requirements to develop a web crawler. 4. 1 Development of a Python-based web crawlerDuring the development, I now worked along with the page structure shown in figure 3. So I started with the extraction of the author list. I defined the URL “ to be crawled and used to start the Selenium Webdriver. In the following, I extracted all required parts of the code to run the Selenium Webdriver. # Importfrom selenium import webdriverfrom import Options# Define Browser Optionschrome_options = Options()d_argument(“–headless”) # Hides the browser window# Reference the local Chromedriver instancechrome_path = r’/usr/local/bin/chromedriver’driver = (executable_path=chrome_path, options=chrome_options)# Run the Webdriver, save page an quit (“:/”)
Intro to automation and web Crawling with Selenium – Medium
Learn how to use Selenium and Python to scrap and interact with any WebsitesIn this in depth tutorial series, you will learn how to use Selenium + Python to crawl and interact with almost any specifically, you’ll learn how to:Make requests and select elements using CSS selectors and XPath — Tutorial Part 1Login to any web platform — Tutorial Part 2Pro tips and crawl in practice — Tutorial Part 3Selenium is a Web Browser Automation Tool originally designed to automate web applications for testing purposes. It is now used for many other applications such as automating web-based admin tasks, interact with platforms which do not provide Api, as well as for Web are many reasons to choose Selenium when crawling. Here are some reasons:Supports many languages: Python, Java, Python, C#, PHP, Ruby…Supports javascript: so you can access more information on the page, and simulate behaviours that are close to human can be integrated: with Maven, Jenkins & Docker so it is easy to productionise your scriptsOn the other side, Selenium has some drawbacks compared to regular (non-js) crawlers like scrapy, requests, urllib in Python. More specifically, it needs more ressource, is slower, and is difficult to is therefore always advisable to use Selenium if speed is not an issue, and use it on the most complex sites to portant note: Scraping is against some websites’ terms of service. Please read the website terms of service before this tutorial, we will use Python 3. x. You can also use Python 2. 7, but some parts of the code may require slight changes — check out especially the stall dependenciesFirst you will need to create your own virtual environment and install Selenium Python module. If you need to install virtual environment, please follow the rtualenv selenium_examplesource selenium_example/bin/activatepip install seleniumInstall Chrome DriverSecond, you need to install the Google Chrome Driver. Click here to Download the latest DriverNB: Selenium also supports Firefox and Safari, but Chrome is most popular among developers and most a script and start importing the necessary the packagesLet’s now load our essential dependencies for this tutorial! from selenium import webdriverfrom import OptionsThe first line import the Web Driver, and the second import Chrome OptionsSelenium offers many options such as:The window sizeBrowse in incognito modeUse proxiesIn this tutorial we will browse in incognito mode and set up the window-size to 1920–1080. You’ll learn how to use Proxies in the last rome_options = Options()d_argument(“–incognito”)d_argument(“–window-size=1920×1080”)Create your instancedriver = (chrome_options=chrome_options, executable_path=
Intro to automation and web Crawling with Selenium – Medium
Learn how to use Selenium and Python to scrap and interact with any WebsitesIn this in depth tutorial series, you will learn how to use Selenium + Python to crawl and interact with almost any specifically, you’ll learn how to:Make requests and select elements using CSS selectors and XPath — Tutorial Part 1Login to any web platform — Tutorial Part 2Pro tips and crawl in practice — Tutorial Part 3Selenium is a Web Browser Automation Tool originally designed to automate web applications for testing purposes. It is now used for many other applications such as automating web-based admin tasks, interact with platforms which do not provide Api, as well as for Web are many reasons to choose Selenium when crawling. Here are some reasons:Supports many languages: Python, Java, Python, C#, PHP, Ruby…Supports javascript: so you can access more information on the page, and simulate behaviours that are close to human can be integrated: with Maven, Jenkins & Docker so it is easy to productionise your scriptsOn the other side, Selenium has some drawbacks compared to regular (non-js) crawlers like scrapy, requests, urllib in Python. More specifically, it needs more ressource, is slower, and is difficult to is therefore always advisable to use Selenium if speed is not an issue, and use it on the most complex sites to portant note: Scraping is against some websites’ terms of service. Please read the website terms of service before this tutorial, we will use Python 3. x. You can also use Python 2. 7, but some parts of the code may require slight changes — check out especially the stall dependenciesFirst you will need to create your own virtual environment and install Selenium Python module. If you need to install virtual environment, please follow the rtualenv selenium_examplesource selenium_example/bin/activatepip install seleniumInstall Chrome DriverSecond, you need to install the Google Chrome Driver. Click here to Download the latest DriverNB: Selenium also supports Firefox and Safari, but Chrome is most popular among developers and most a script and start importing the necessary the packagesLet’s now load our essential dependencies for this tutorial! from selenium import webdriverfrom import OptionsThe first line import the Web Driver, and the second import Chrome OptionsSelenium offers many options such as:The window sizeBrowse in incognito modeUse proxiesIn this tutorial we will browse in incognito mode and set up the window-size to 1920–1080. You’ll learn how to use Proxies in the last rome_options = Options()d_argument(“–incognito”)d_argument(“–window-size=1920×1080”)Create your instancedriver = (chrome_options=chrome_options, executable_path=
Frequently Asked Questions about selenium web crawler
Is selenium a web crawler?
Selenium is a Web Browser Automation Tool originally designed to automate web applications for testing purposes. It is now used for many other applications such as automating web-based admin tasks, interact with platforms which do not provide Api, as well as for Web Crawling.Jan 13, 2019
Is selenium good for web scraping?
Selenium is an open-source web-based automation tool. Selenium primarily used for testing in the industry but It can also be used for web scraping. We’ll use the Chrome browser but you can try on any browser, It’s almost the same. Now let us see how to use selenium for Web Scraping.Aug 30, 2020
What is the difference between BeautifulSoup and selenium?
Comparing selenium vs BeautifulSoup allows you to see that BeautifulSoup is more user-friendly and allows you to learn faster and begin web scraping smaller tasks easier. Selenium on the other hand is important when the target website has a lot of java elements in its code.Feb 10, 2021