• November 15, 2024

Python Requests Get Params

Quickstart — Requests 2.26.0 documentation

Eager to get started? This page gives a good introduction in how to get started
with Requests.
First, make sure that:
Requests is installed
Requests is up-to-date
Let’s get started with some simple examples.
Make a Request¶
Making a request with Requests is very simple.
Begin by importing the Requests module:
Now, let’s try to get a webpage. For this example, let’s get GitHub’s public
timeline:
>>> r = (”)
Now, we have a Response object called r. We can
get all the information we need from this object.
Requests’ simple API means that all forms of HTTP request are as obvious. For
example, this is how you make an HTTP POST request:
>>> r = (”, data = {‘key’:’value’})
Nice, right? What about the other HTTP request types: PUT, DELETE, HEAD and
OPTIONS? These are all just as simple:
>>> r = requests. options(”)
That’s all well and good, but it’s also only the start of what Requests can
do.
Passing Parameters In URLs¶
You often want to send some sort of data in the URL’s query string. If
you were constructing the URL by hand, this data would be given as key/value
pairs in the URL after a question mark, e. g.
Requests allows you to provide these arguments as a dictionary of strings,
using the params keyword argument. As an example, if you wanted to pass
key1=value1 and key2=value2 to, you would use the
following code:
>>> payload = {‘key1’: ‘value1’, ‘key2’: ‘value2’}
>>> r = (”, params=payload)
You can see that the URL has been correctly encoded by printing the URL:
>>> print()
Note that any dictionary key whose value is None will not be added to the
URL’s query string.
You can also pass a list of items as a value:
>>> payload = {‘key1’: ‘value1’, ‘key2’: [‘value2’, ‘value3’]}
Response Content¶
We can read the content of the server’s response. Consider the GitHub timeline
again:
>>> import requests
>>>
‘[{“repository”:{“open_issues”:0, “url”:”
Requests will automatically decode content from the server. Most unicode
charsets are seamlessly decoded.
When you make a request, Requests makes educated guesses about the encoding of
the response based on the HTTP headers. The text encoding guessed by Requests
is used when you access You can find out what encoding Requests is
using, and change it, using the r. encoding property:
>>> r. encoding
‘utf-8’
>>> r. encoding = ‘ISO-8859-1’
If you change the encoding, Requests will use the new value of r. encoding
whenever you call You might want to do this in any situation where
you can apply special logic to work out what the encoding of the content will
be. For example, HTML and XML have the ability to specify their encoding in
their body. In situations like this, you should use ntent to find the
encoding, and then set r. encoding. This will let you use with
the correct encoding.
Requests will also use custom encodings in the event that you need them. If
you have created your own encoding and registered it with the codecs
module, you can simply use the codec name as the value of r. encoding and
Requests will handle the decoding for you.
Binary Response Content¶
You can also access the response body as bytes, for non-text requests:
>>> ntent
b'[{“repository”:{“open_issues”:0, “url”:”
The gzip and deflate transfer-encodings are automatically decoded for you.
The br transfer-encoding is automatically decoded for you if a Brotli library
like brotli or brotlicffi is installed.
For example, to create an image from binary data returned by a request, you can
use the following code:
>>> from PIL import Image
>>> from io import BytesIO
>>> i = (BytesIO(ntent))
JSON Response Content¶
There’s also a builtin JSON decoder, in case you’re dealing with JSON data:
>>> ()
[{‘repository’: {‘open_issues’: 0, ‘url’: ‘
In case the JSON decoding fails, () raises an exception. For example, if
the response gets a 204 (No Content), or if the response contains invalid JSON,
attempting () raises requests. exceptions. JSONDecodeError. This wrapper exception
provides interoperability for multiple exceptions that may be thrown by different
python versions and json serialization libraries.
It should be noted that the success of the call to () does not
indicate the success of the response. Some servers may return a JSON object in a
failed response (e. g. error details with HTTP 500). Such JSON will be decoded
and returned. To check that a request is successful, use
r. raise_for_status() or check atus_code is what you expect.
Raw Response Content¶
In the rare case that you’d like to get the raw socket response from the
server, you can access If you want to do this, make sure you set
stream=True in your initial request. Once you do, you can do this:
>>> r = (”, stream=True)

>>> (10)
‘\x1f\x8b\x08\x00\x00\x00\x00\x00\x00\x03’
In general, however, you should use a pattern like this to save what is being
streamed to a file:
with open(filename, ‘wb’) as fd:
for chunk in er_content(chunk_size=128):
(chunk)
Using er_content will handle a lot of what you would otherwise
have to handle when using directly. When streaming a
download, the above is the preferred and recommended way to retrieve the
content. Note that chunk_size can be freely adjusted to a number that
may better fit your use cases.
Note
An important note about using er_content versus
er_content will automatically decode the gzip and deflate
transfer-encodings. is a raw stream of bytes – it does not
transform the response content. If you really need access to the bytes as they
were returned, use
More complicated POST requests¶
Typically, you want to send some form-encoded data — much like an HTML form.
To do this, simply pass a dictionary to the data argument. Your
dictionary of data will automatically be form-encoded when the request is made:
>>> r = (“, data=payload)
{…
“form”: {
“key2”: “value2”,
“key1”: “value1″},… }
The data argument can also have multiple values for each key. This can be
done by making data either a list of tuples or a dictionary with lists
as values. This is particularly useful when the form has multiple elements that
use the same key:
>>> payload_tuples = [(‘key1’, ‘value1’), (‘key1’, ‘value2’)]
>>> r1 = (”, data=payload_tuples)
>>> payload_dict = {‘key1’: [‘value1’, ‘value2’]}
>>> r2 = (”, data=payload_dict)
“key1”: [
“value1”,
“value2″]},… }
>>> ==
True
There are times that you may want to send data that is not form-encoded. If
you pass in a string instead of a dict, that data will be posted directly.
For example, the GitHub API v3 accepts JSON-Encoded POST/PATCH data:
>>> import json
>>> url = ”
>>> payload = {‘some’: ‘data’}
>>> r = (url, (payload))
Instead of encoding the dict yourself, you can also pass it directly using
the json parameter (added in version 2. 4. 2) and it will be encoded automatically:
>>> r = (url, json=payload)
Note, the json parameter is ignored if either data or files is passed.
Using the json parameter in the request will change the Content-Type in the header to application/json.
POST a Multipart-Encoded File¶
Requests makes it simple to upload Multipart-encoded files:
>>> files = {‘file’: open(”, ‘rb’)}
>>> r = (url, files=files)
“files”: {
“file”: “<>“},… }
You can set the filename, content_type and headers explicitly:
>>> files = {‘file’: (”, open(”, ‘rb’), ‘application/’, {‘Expires’: ‘0’})}
If you want, you can send strings to be received as files:
>>> files = {‘file’: (”, ‘some, data, to, send\nanother, row, to, send\n’)}
“file”: “some, data, to, send\\nanother, row, to, send\\n”},… }
In the event you are posting a very large file as a multipart/form-data
request, you may want to stream the request. By default, requests does not
support this, but there is a separate package which does –
requests-toolbelt. You should read the toolbelt’s documentation for more details about how to use it.
For sending multiple files in one request refer to the advanced
section.
Warning
It is strongly recommended that you open files in binary
mode. This is because Requests may attempt to provide
the Content-Length header for you, and if it does this value
will be set to the number of bytes in the file. Errors may occur
if you open the file in text mode.
Response Status Codes¶
We can check the response status code:
>>> atus_code
200
Requests also comes with a built-in status code lookup object for easy
reference:
>>> atus_code ==
If we made a bad request (a 4XX client error or 5XX server error response), we
can raise it with
Response. raise_for_status():
>>> bad_r = (”)
404
>>> bad_r. raise_for_status()
Traceback (most recent call last):
File “requests/”, line 832, in raise_for_status
raise _error
TPError: 404 Client Error
But, since our status_code for r was 200, when we call
raise_for_status() we get:
>>> r. raise_for_status()
None
All is well.
Cookies¶
If a response contains some Cookies, you can quickly access them:
>>> r = (url)
>>> okies[‘example_cookie_name’]
‘example_cookie_value’
To send your own cookies to the server, you can use the cookies
parameter:
>>> cookies = dict(cookies_are=’working’)
>>> r = (url, cookies=cookies)
‘{“cookies”: {“cookies_are”: “working”}}’
Cookies are returned in a RequestsCookieJar,
which acts like a dict but also offers a more complete interface,
suitable for use over multiple domains or paths. Cookie jars can
also be passed in to requests:
>>> jar = questsCookieJar()
>>> (‘tasty_cookie’, ‘yum’, domain=”, path=’/cookies’)
>>> (‘gross_cookie’, ‘blech’, domain=”, path=’/elsewhere’)
>>> r = (url, cookies=jar)
‘{“cookies”: {“tasty_cookie”: “yum”}}’
Redirection and History¶
By default Requests will perform location redirection for all verbs except
HEAD.
We can use the history property of the Response object to track redirection.
The Response. history list contains the
Response objects that were created in order to
complete the request. The list is sorted from the oldest to the most recent
response.
For example, GitHub redirects all HTTP requests to HTTPS:

>>> r. history
[]
If you’re using GET, OPTIONS, POST, PUT, PATCH or DELETE, you can disable
redirection handling with the allow_redirects parameter:
>>> r = (”, allow_redirects=False)
301
[]
If you’re using HEAD, you can enable redirection as well:
>>> r = (”, allow_redirects=True)
Timeouts¶
You can tell Requests to stop waiting for a response after a given number of
seconds with the timeout parameter. Nearly all production code should use
this parameter in nearly all requests. Failure to do so can cause your program
to hang indefinitely:
>>> (”, timeout=0. 001)
File ““, line 1, in
requests. Timeout: HTTPConnectionPool(host=”, port=80): Request timed out. (timeout=0. 001)
timeout is not a time limit on the entire response download;
rather, an exception is raised if the server has not issued a
response for timeout seconds (more precisely, if no bytes have been
received on the underlying socket for timeout seconds). If no timeout is specified explicitly, requests do
not time out.
Errors and Exceptions¶
In the event of a network problem (e. DNS failure, refused connection, etc),
Requests will raise a ConnectionError exception.
Response. raise_for_status() will
raise an HTTPError if the HTTP request
returned an unsuccessful status code.
If a request times out, a Timeout exception is
raised.
If a request exceeds the configured number of maximum redirections, a
TooManyRedirects exception is raised.
All exceptions that Requests explicitly raises inherit from
questException.
Ready for more? Check out the advanced section.
If you’re on the job market, consider taking this programming quiz. A substantial donation will be made to this project, if you find a job through this platform.
Python Requests get Method - W3Schools

Python Requests get Method – W3Schools

❮ Requests Module
Example
Make a request to a web page, and return the status code:
import requestsx = (”)print(atus_code)
Run Example »
Definition and Usage
The get() method sends a GET request to the specified url.
Syntax
(url, params={key: value}, args)
args means zero or more of the named arguments in the parameter table below. Example:
(url, timeout=2. 50)
Parameter Values
Parameter
Description
url
Try it
Required. The url of the request
params
Optional. A dictionary, list of tuples or bytes to send as a query fault None
allow_redirects
Optional. A Boolean to enable/disable fault
True (allowing redirects)
auth
Optional. A tuple to enable a certain HTTP fault
None
cert
Optional. A String or Tuple specifying a cert file or fault
cookies
Optional. A dictionary of cookies to send to the specified fault
headers
Optional. A dictionary of HTTP headers to send to the specified fault None
proxies
Optional. A dictionary of the protocol to the proxy fault
stream
Optional. A Boolean indication if the response should be immediately downloaded (False) or streamed (True). Default
False
timeout
Optional. A number, or a tuple, indicating how many seconds to wait for the client to make a connection and/or send a fault None which means the request will continue
until the connection is closed
verify
Optional. A Boolean or a String indication to verify the servers TLS certificate or fault True
Return Value
The get() method returns a sponse object.
❮ Requests Module
GET and POST requests using Python - GeeksforGeeks

GET and POST requests using Python – GeeksforGeeks

This post discusses two HTTP (Hypertext Transfer Protocol) request methods GET and POST requests in Python and their implementation in is HTTP? HTTP is a set of protocols designed to enable communication between clients and servers. It works as a request-response protocol between a client and server. A web browser may be the client, and an application on a computer that hosts a web site may be the, to request a response from the server, there are mainly two methods:GET: to request data from the: to submit data to be processed to the is a simple diagram which explains the basic concept of GET and POST, to make HTTP requests in python, we can use several HTTP libraries like:liburllibrequestsThe most elegant and simplest of above listed libraries is Requests. We will be using requests library in this article. To download and install Requests library, use following command:pip install requestsOR, download it from here and install a Get requestimport requestslocation = “delhi technological university”PARAMS = {‘address’:location}r = (url = URL, params = PARAMS)data = ()latitude = data[‘results’][0][‘geometry’][‘location’][‘lat’]longitude = data[‘results’][0][‘geometry’][‘location’][‘lng’]formatted_address = data[‘results’][0][‘formatted_address’]print(“Latitude:%s\nLongitude:%s\nFormatted Address:%s”%(latitude, longitude, formatted_address))Output:The above example finds latitude, longitude and formatted address of a given location by sending a GET request to the Google Maps API. An API (Application Programming Interface) enables you to access the internal features of a program in a limited fashion. And in most cases, the data provided is in JSON(JavaScript Object Notation) format (which is implemented as dictionary objects in Python! ). Important points to infer:PARAMS = {‘address’:location}The URL for a GET request generally carries some parameters with it. For requests library, parameters can be defined as a dictionary. These parameters are later parsed down and added to the base url or the understand the parameters role, try to print after the response object is created. You will see something like this: is the actual URL on which GET request is mader = (url = URL, params = PARAMS)Here we create a response object ‘r’ which will store the request-response. We use () method since we are sending a GET request. The two arguments we pass are url and the parameters = ()Now, in order to retrieve the data from the response object, we need to convert the raw response content into a JSON type data structure. This is achieved by using json() method. Finally, we extract the required information by parsing down the JSON type a POST requestimport requestsAPI_KEY = “XXXXXXXXXXXXXXXXX”source_code = data = {‘api_dev_key’:API_KEY, ‘api_option’:’paste’, ‘api_paste_code’:source_code, ‘api_paste_format’:’python’}r = (url = API_ENDPOINT, data = data)pastebin_url = r. textprint(“The pastebin URL is:%s”%pastebin_url)This example explains how to paste your source_code to by sending POST request to the PASTEBIN of all, you will need to generate an API key by signing up here and then access your API key portant features of this code:data = {‘api_dev_key’:API_KEY,
‘api_option’:’paste’,
‘api_paste_code’:source_code,
‘api_paste_format’:’python’}Here again, we will need to pass some data to API server. We store this data as a dictionary. r = (url = API_ENDPOINT, data = data)Here we create a response object ‘r’ which will store the request-response. We use () method since we are sending a POST request. The two arguments we pass are url and the data stebin_url = response, the server processes the data sent to it and sends the pastebin URL of your source_code which can be simply accessed by. method could be used for many other tasks as well like filling and submitting the web forms, posting on your FB timeline using the Facebook Graph API, are some important points to ponder upon:When the method is GET, all form data is encoded into the URL, appended to the action URL as query string parameters. With POST, form data appears within the message body of the HTTP GET method, the parameter data is limited to what we can stuff into the request line (URL). Safest to use less than 2K of parameters, some servers handle up to such problem in POST method since we send data in message body of the HTTP request, not the ASCII characters are allowed for data to be sent in GET is no such restriction in POST is less secure compared to POST because data sent is part of the URL. So, GET method should not be used when sending passwords or other sensitive blog is contributed by Nikhil Kumar. If you like GeeksforGeeks and would like to contribute, you can also write an article using or mail your article to See your article appearing on the GeeksforGeeks main page and help other write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

Frequently Asked Questions about python requests get params

Leave a Reply

Your email address will not be published. Required fields are marked *